Kinetics and regulation of a Ca2+-activated Cl- conductance in mouse renal inner medullary collecting duct cells.
نویسندگان
چکیده
Using the whole cell patch-clamp technique, a Ca2+-activated Cl- conductance (CaCC) was transiently activated by extracellular ATP (100 microM) in primary cultures of mouse inner medullary collecting duct (IMCD) cells and in the mouse IMCD-K2 cell line. ATP also transiently increased intracellular Ca2+ concentration ([Ca2+]i) from 100 nM to peak values of approximately 750 nM in mIMCD-K2 cells, with a time course similar to the ATP-induced activation and decay of the CaCC. Removal of extracellular Ca2+ had no major effect on the peak Cl- conductance or the increase in [Ca2+]i induced by ATP, suggesting that Ca2+ released from intracellular stores directly activates the CaCC. In mIMCD-K2 cells, a rectifying time- and voltage-dependent current was observed when [Ca2+]i was fixed via the patch pipette to between 100 and 500 nM. Maximal activation occurred at approximately 1 microM [Ca2+]i, with currents losing any kinetics and displaying a linear current-voltage relationship. From Ca2+-dose-response curves, an EC50 value of approximately 650 nM at -80 mV was obtained, suggesting that under physiological conditions the CaCC would be near fully activated by mucosal nucleotides. Noise analysis of whole cell currents in mIMCD-K2 cells suggests a single-channel conductance of 6-8 pS and a density of approximately 5,000 channels/cell. In conclusion, the CaCC in mouse IMCD cells is a low-conductance, nucleotide-sensitive Cl- channel, whose activity is tightly coupled to changes in [Ca2+]i over the normal physiological range.
منابع مشابه
Kinetics and regulation of a Ca -activated Cl conductance in mouse renal inner medullary collecting duct cells
Boese, S. H., O. Aziz, N. L. Simmons, and M. A. Gray. Kinetics and regulation of a Ca -activated Cl conductance in mouse renal inner medullary collecting duct cells. Am J Physiol Renal Physiol 286: F682–F692, 2004. First published December 16, 2003; 10.1152/ ajprenal.00123.2003.—Using the whole cell patch-clamp technique, a Ca -activated Cl conductance (CaCC) was transiently activated by extrac...
متن کاملCharacterization of Ca2+-activated Cl- currents in mouse kidney inner medullary collecting duct cells.
Ca2+-activated Cl- (ClCa) channels were characterized biophysically and pharmacologically in a mouse kidney inner medullary collecting duct cell line, IMCD-K2. Whole cell recording was performed with symmetrical N-methyl-d-glucamine chloride (NMDG)-Cl in the intracellular and extracellular solutions, and the intracellular Ca2+ concentration ([Ca2+]i) was adjusted with Ca2+-EGTA buffers. The amp...
متن کاملMouse cystic fibrosis transmembrane conductance regulator forms cAMP-PKA-regulated apical chloride channels in cortical collecting duct.
The cystic fibrosis transmembrane conductance regulator (CFTR) is expressed in many segments of the mammalian nephron, where it may interact with and modulate the activity of a variety of apical membrane proteins, including the renal outer medullary potassium (ROMK) K(+) channel. However, the expression of CFTR in apical cell membranes or its function as a Cl(-) channel in native renal epitheli...
متن کاملHydrogen peroxide stimulates chloride secretion in primary inner medullary collecting duct cells via mPGES-1-derived PGE2.
We investigated the role and mechanism of H2O2 in regulation of NaCl transport in primary inner medullary collecting duct (IMCD) cells. IMCD cells were isolated from wild-type mice and grown onto semipermeable membranes, and short-circuit current (Isc) was determined by Ussing chamber. Exposure of IMCD cells to H2O2 at a range of 100-300 microM caused a rapid increase in Isc in a time- and dose...
متن کاملTroglitazone Induces Extracellular Matrix and Cytoskeleton Remodeling in Mouse Collecting Duct Cells
Peroxisome proliferator-activated receptor (PPARγ) has been shown to have a protective role in the nephron through its ability to inhibit a transforming growth factor- (TGF-β) mediated fibrotic response. In contrast, PPARγ was also shown to induce a mesenchymal transformation in epithelial intestinal cells. A fibrotic response in the collecting duct has only recently been established; however, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Renal physiology
دوره 286 4 شماره
صفحات -
تاریخ انتشار 2004